Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Biomed Eng ; 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2257378

ABSTRACT

Face masks have been proven to be medicine's best public health tool for preventing transmission of airborne pathogens. However, in situations with continuous exposure, lower quality and "do-it-yourself" face masks cannot provide adequate protection against pathogens, especially when mishandled. In addition, the use of multiple face masks each day places a strain on personal protective equipment (PPE) supply and is not environmentally sustainable. Therefore, there is a significant clinical and commercial need for a reusable, pathogen-inactivating face mask. Herein, we propose adding quaternary poly(dimethylaminohexadecyl methacrylate), q(PDMAHDM), abbreviated to q(PDM), to existing fabric networks to generate "contact-killing" face masks-effectively turning cotton, polypropylene, and polyester into pathogen resistant materials. It was found that q(PDM)-integrated face masks were able to inactivate both Gram-positive and Gram-negative bacteria in liquid culture and aerosolized droplets. Furthermore, q(PDM) was electrospun into homogeneous polymer fibers, which makes the polymer practical for low-cost, scaled-up production.

SELECTION OF CITATIONS
SEARCH DETAIL